

Was erwartet Sie am heutigen Tag?

- **09.00 09.15 Uhr:** Eintreffen und Begrüßung auf der "Klöndeel"
- 09.15 10.15 Uhr: Jörn-Fried Johannsen, Regionalleiter Nord-Ost

Vorstellung BASF SE APD und BASF Plant Science

10.15 – 10.45 Uhr: Dr. Mathis Müller, Beratungsleiter Schleswig-Holstein

Vorstellung BASF SE - Strukturen der Beratung und des Versuchswesens in Schleswig-Holstein

- **10.45 11.00 Uhr:** Pause
- 11.00 12.00 Uhr: Dr. Mathis Müller, Beratungsleiter Schleswig-Holstein

Aufgaben moderner Agro-Chemieforschung - Anforderung und Rahmenbedingungen der Zulassung und Registrierung moderner, innovativer Pflanzenschutzmittel

- 12.00 13.00 Uhr: Mittagessen auf der "Klöndeel"
- 13.00 15.30 Uhr: Sönke Först, Beratungstechniker Schleswig-Holstein

Rundgang Versuchsfeld Hof Siek in Kombination mit Kulturlehrpfad Barkauer Land e.V.: Herr Günther Wachholz

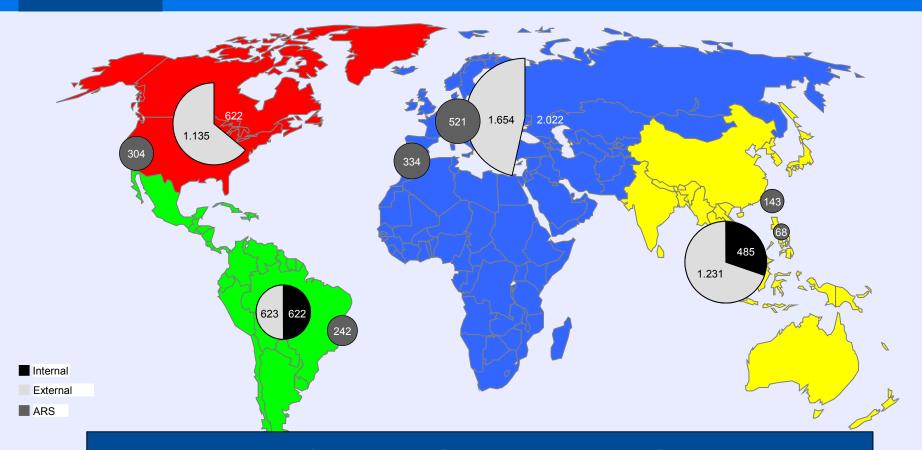
Thema des heutigen Tages?

Wir möchten mit ...

... vereinten Kräfte aus Wirtschaft, Wissenschaft und Politik ...

... die Zukunft gestalten:

"Shaping the future"



Dr. Mathis Müller, BASF SE

AP Field Trials – an overview (2007) GOBI-project

~ 10 000 replicated field trials (R&D ~ 8 800); costs: m€ 52,7; 305 FTE inv.

A sizeable portion of the AP R&D budget is driven by field biology (1 trial ~ € 5 000)

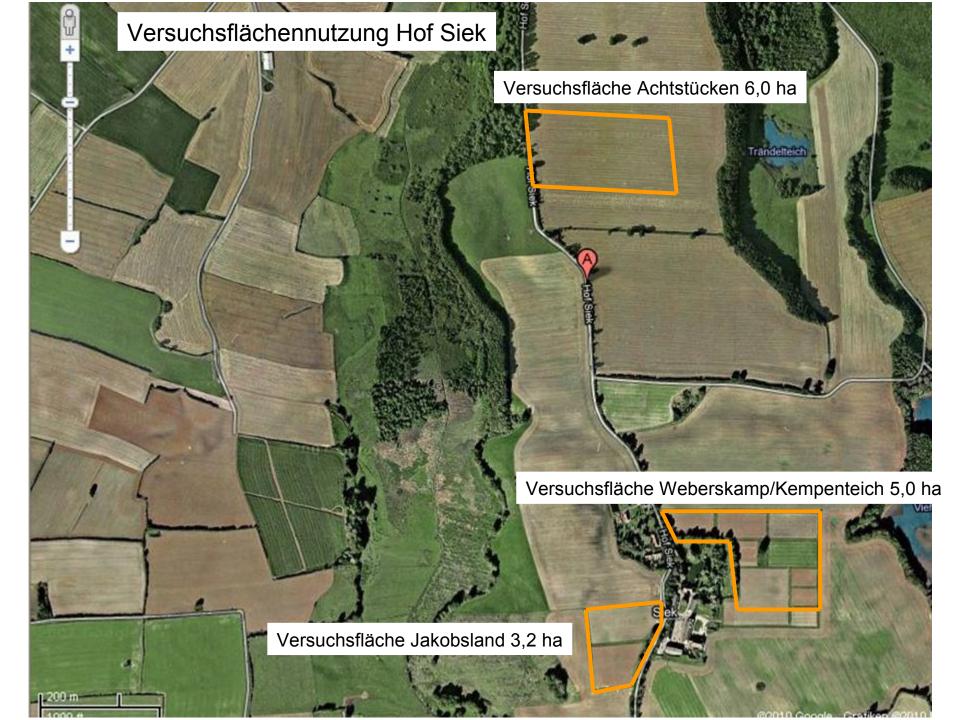
Distribution of Sites

- 18 sites qualified as mini farms
- Sites located in main agricultural areas
- Used for development, registration and demo-trials incl field days and conferences with clients/distributors, advisors, farmers
- usually 1 technician staff plus minijobbers or local farmer (hourly basis)
- Close collaboration with regional sales teams
- Full technical support for regional necessities

Vertriebsregionen Deutschland

Versuchstechnik BASF Schleswig-Holstein

Beratungsleiter: Dr. Mathis Müller



Versuchstechnik BASF Schleswig-Holstein

- •Tätigkeitsfelder:
 - Entwicklung und Zulassung von neuen Produkten
 - ca. 3000 Parzellen nach GEP-Standard
 - •Produktionstechnische Versuche in Getreide und Raps (Intensitätsfragen)
 - ca. 900 Parzellen
 - Düngungs- und Sortenversuche in Getreide und Raps
 - ca. 600 Parzellen

In Summe etwa 4500 Parzellen/2 Techniker

BASF - Versuchsvorhaben Schleswig-Holstein

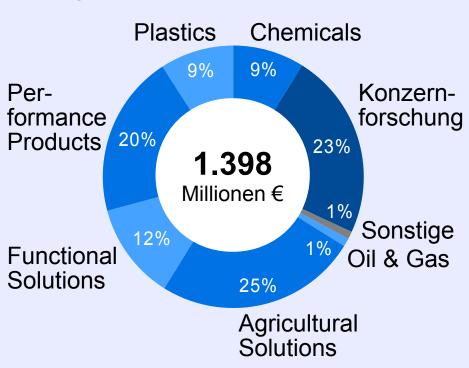
Kerntätigkeit BASF Schleswig-Holstein

- •Praxisorientierte Beratungstätigkeit Schwerpunkt Pflanzenschutz bei ...
 - -Betrieben
 - -Handel
 - -Private Beratung und Offizialberatung
- Maßgeblich gestützt durch die Ergebnisse und Erfahrungen aus flächendeckenden Versuchen im Land
- •Ergänzt durch regelmäßigen Austausch mit Forschung (Uni, FH, private Forschungsunternehmen) und Praxis

BASF – The Chemical Company

Aufgaben moderner Agro-Chemieforschung

Anforderung und Rahmenbedingungen der Zulassung und Registrierung moderner, innovativer Pflanzenschutzmittel



Aufwendungen in Forschung und Entwicklung

- 2009: Aufwendungen für Forschung und Entwicklung ca. 1,4 Milliarden €

 weltweit führend in der chemischen Industrie
- Seit 2005 bis einschließlich 2009: Steigerung der Aufwendungen um rund 30 %
- Fast 1.900 Kooperationen mit Universitäten, Forschungsinstituten, Start-up-Unternehmen und Industriepartnern
- 2010 Umsatz von bis zu 6 Milliarden € und 2015 zwischen 6 und 8 Milliarden € allein aus Produktinnovationen erwartet

Pflanzenschutzforschung weltweit: BASF-Agrarzentrum Limburgerhof

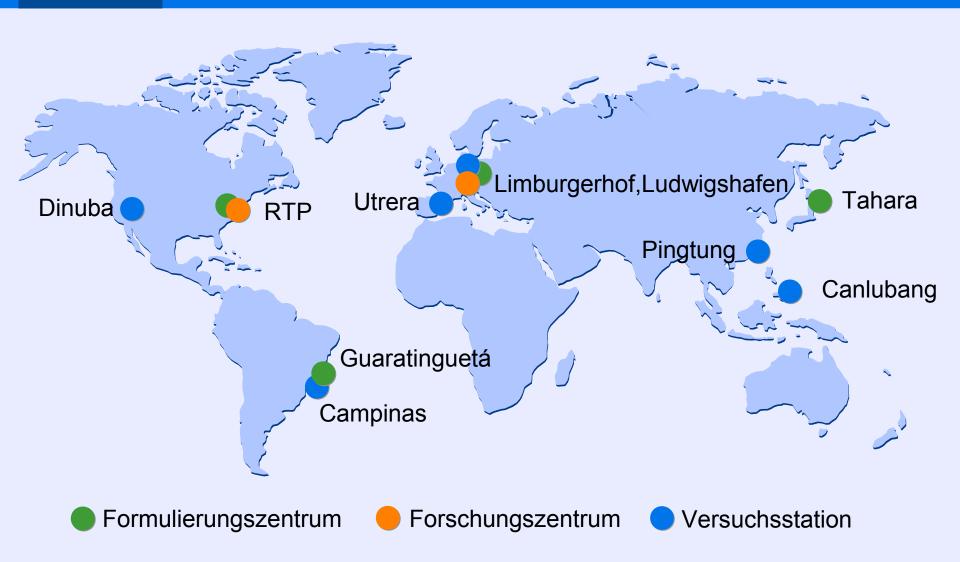
- Limburgerhof besteht seit 1914 für Forschung, die aus der Entdeckung des Haber-Bosch-Verfahrens (1913) notwendig wurde
- Seit 40er Jahren Pflanzenschutzforschung (1946 Entdeckung U46 M, Vermarktung 1949)
 - Forschung und Entwicklung (Fungizide und Herbizide)
 - Suchforschung Insektizide
 - Produktsicherheit
 - Formulierungsentwicklung
 - Registrierung
 - Sitz der Zentrale und des Globalen Marketings
 - Sitz der Europa- und Deutschlandorganisation

BASF Agrarzentrum Limburgerhof – die verschiedenen Arbeitsgebiete

- Verschiedene Arbeitsgebiete:
 - Pflanzenschutz (Crop Protection)
 - Pflanzenbiotechnologie (BASF Plant Science GmbH)
 - ■Düngemittelentwicklung (Haber-Bosch-Verfahren)
- In Limburgerhof arbeiten ca. 1.500 Menschen (Gärtner, Chemiker, Agrarwissenschaftler, Biologen, etc.)
- Die Freilandfläche beträgt 40 Hektar
- Der Gutsbetrieb Rehhütte (500 Hektar) liegt in unmittelbarer Nachbarschaft

BASF Agrarzentrum Limburgerhof

- Die verschiedenen Arbeitsgebiete
 - Crop Protection
 - ■Plant Science
 - ■Entwicklung von Düngemitteln


BASF Crop Protection – Innovationen für die Landwirtschaft

- Eines der weltweit führenden forschenden Unternehmen im Pflanzenschutz
- Innovative Fungizide, Insektizide, Herbizide sowie Dienstleistungen helfen Landwirten
- Innovationen, welche die
 - ■landwirtschaftliche Produktion optimieren
 - die Ernährung verbessern und so
 - die Lebensqualität einer wachsenden Weltbevölkerung steigern

BASF-Pflanzenschutzforschung weltweit

Pflanzenschutzmittel im Überblick

Pflanzenschutzmittel in der Umgangssprache als "Pestizide" bezeichnet

Fungizide gegen Schadpilze Insektizide gegen Schadinsekten Herbizide gegen Unkräuter Andere z. B. Bioregulatoren, Pheromone

Fungizide

- Schadpilze verursachen
 - Schäden an Nutzpflanzen und bilden Toxine im Erntegut
- Schadpilze senken
 - die Leistungsfähigkeit durch Schädigung physiologischer Prozesse
- Die Wirkungsweise von Fungiziden:
 - Hemmung von pilzlichen Proteinen (z. B. mitochondriale Atmungskette, Sterol-Biosynthese)
- Forschungsziele:
 - neue Wirkungsmechanismen
 - Wirkung gegen breites Krankheitsspektrum
 - positive Beeinflussung der Pflanzengesundheit

Insektizide

- Insekten verursachen
 - hohe Schäden durch Fress- und Saugtätigkeit, Übertragung gefährlicher Viren
- Vorrangiger Einsatz in warmen Regionen als Spritz- oder Beizmittel bei Nutzpflanzen
- Bekämpfung von Krankheitsüberträgern (z. B. Malaria)
- Ideal zur Bekämpfung von Schädlingen (z. B. von Termiten)
- Forschungsziele:
 - nützlings- und bienenschonend
 - weniger toxisch
 - anwenderfreundliche Formulierung
 - Einsatz zur Saatgutbehandlung

Herbizide

- Unkräuter verursachen
 - Schäden durch Konkurrenz um Nährstoffe, Wasser und Licht sowie die Beeinträchtigung der Ernte
- Es gibt selektive und nicht-selektive Herbizide
- Die Wirkungsweise:
 - Unterbindung lebenswichtiger Stoffwechselprozesse
 (z. B. Photosynthese)
- Forschungsziele:
 - neue Wirkungsmechanismen,
 - Gräser- und Breitblattkontrolle in bedeutenden Ackerkulturen (Getreide, Mais, Reis)

Bioregulatoren

- Bedarfsgerechte Steuerung von Wachstums- und Entwicklungsprozessen wie Länge, Blütenbildung oder Reifeprozessen
- Wichtige Einsatzgebiete sind:
 - Die Verbesserung der Standfestigkeit von Getreide und Raps
 - Die Ernteerleichterung im Baumwollanbau durch gleichmäßige Abreife
 - Der Anreiz der Blüten- und Triebbildung im Obstbau bei mangelnder winterlicher Kälte
 - Die Steuerung der Fruchtreife bei Äpfeln und Bananen

Biotechnische Schädlingsbekämpfung

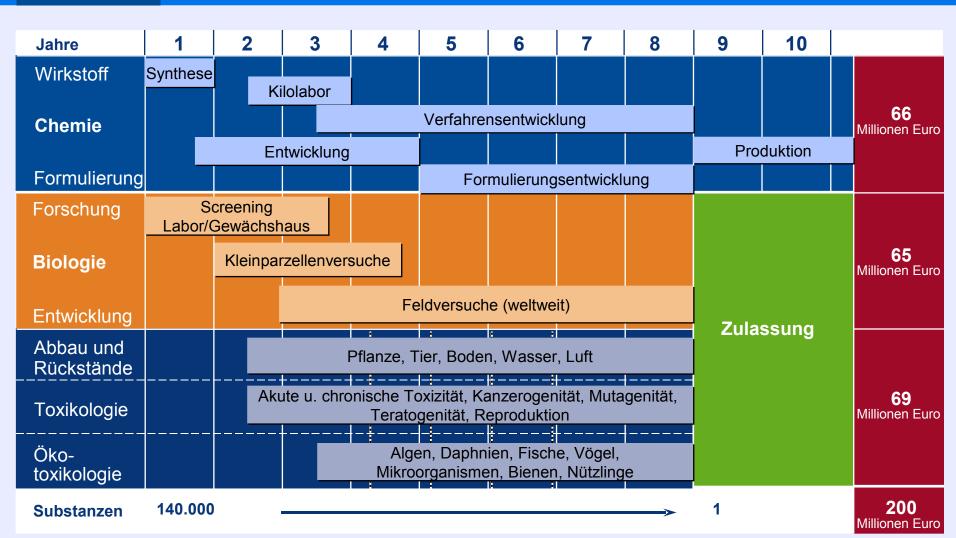
- Die Larven von Trauben- oder Apfelwicklern verursachen Qualitäts- und Ertragseinbußen im Obst- und Weinbau
- Durch den Einsatz von Sexuallockstoffen (Pheromone) werden die Männchen verwirrt und finden die paarungsbereiten Weibchen nicht
- Eine Massenvermehrung wird so verhindert
- Diese RAK®-Technologie ist effektiv und sehr umweltfreundlich

Künstliche Duftstoffquelle (Dispenser)

Alles über die Entwicklung eines Pflanzenschutzmittels

- Sicherheit und Verantwortung
- Anforderungen an ein Pflanzenschutzmittel / Entwicklung eines Pflanzenschutzmittels
- Synthese und Optimierung neuer Substanzen
- Tests auf biologische Wirkung
 - Pre Sreen und Mikrotests
 - Gewächshausprüfung und weltweite Freilandversuche
- Sicherheit
 - Abbau im Boden, Wasser und in der Luft
 - Abbau und Rückstände bei Pflanzen und Tieren
 - Toxikologie
 - Ökotoxikologie
 - Analytik
- Formulierung
- Zulassung in Deutschland

Sicherheit und Verantwortung



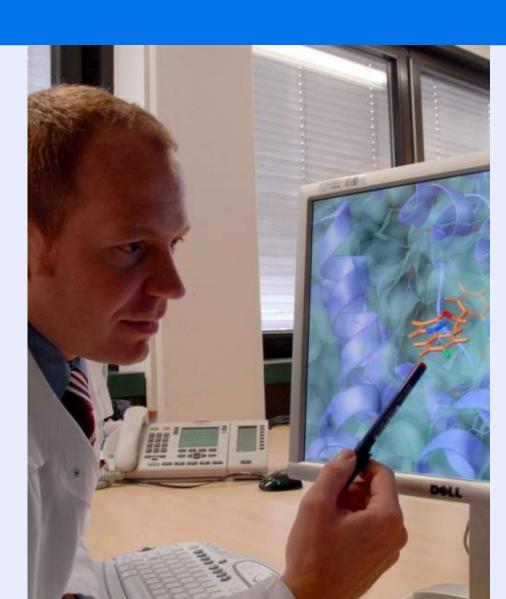
- Pflanzenschutzmittel gehören neben Arzneimitteln zu den am besten untersuchten Substanzen (Ökotox z.B. sogar strenger)
- Für eine Zulassung werden etwa 800 Studien eingereicht
- 140.000 Substanzen werden durchschnittlich getestet, bis ein marktfähiges Produkt gefunden wird
- 8–10 Jahre Entwicklungszeit sind dazu notwendig
- Die Kosten belaufen sich auf ca. 200 Millionen Euro
- Der Verkauf ohne amtliche Genehmigung (Registrierung) ist nicht möglich

Entwicklung eines Pflanzenschutzmittels

Quelle: Industrieverband Agrar, 2006

Anforderungen an ein Pflanzenschutzmittel

- Hohe Wirkungssicherheit
- Gute Verträglichkeit für Kulturpflanzen und Nützlinge (Selektivität)
- Günstiges toxikologisches Profil
- Rascher Abbau bei ausreichender Wirkungsdauer
- Niedrige Aufwandmengen
- Anwenderfreundliche Formulierung
- Wirtschaftlichkeit für Hersteller und Anwender



Synthese und Optimierung neuer Substanzen

- Synthese von zehntausenden chemischen Substanzen mit Simulationsoptimierung
- Test auf Wirksamkeit an Enzymen oder am intakten Organismus
- Ständige Optimierung der Substanz aufgrund der biologischen Tests und der Ergebnisse aus Umweltforschung und Toxikologie

Erfolgsquote: 140.000:1

Tests auf biologische Wirkung: Pre Screen und Mikrotests (Leadfinder)

- Das Pre Screen liefert erste Hinweise auf die Wirksamkeit einer Substanz
- Mikrotests z.B. an Blattstücken sind den Untersuchungen an ganzen Pflanzen vorgeschaltet

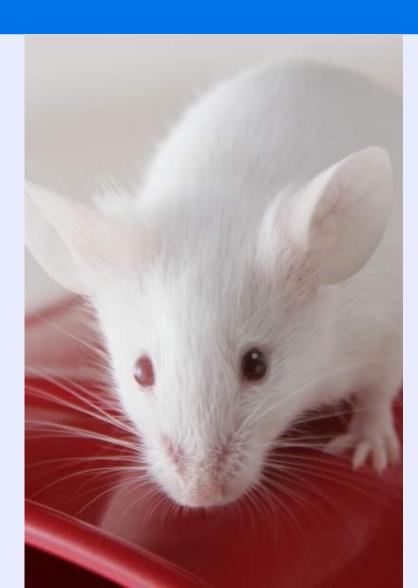
Tests auf biologische Wirkung: Gewächshausprüfung und weltweite Feldversuche

- In Gewächshäusern testen Forscher die Substanzen an intakten Pflanzen
- Weltweite Freilandversuche ermöglichen Tests unter natürlichen Wachstumsbedingungen

Sicherheit: Abbau im Boden, Wasser und in der Luft

- Wie schnell wird die Substanz abgebaut?
- Welche Abbauprodukte (Metaboliten) entstehen dabei?
- Beeinflussen unterschiedliche Bodentypen oder pH-Werte des Wassers das Abbauverhalten?
- Wirkt sich die Sonneneinstrahlung (UV) auf den Abbauprozess aus?
- Welche Abbaumechanismen finden statt?
- Neigt die Substanz dazu, in tiefere Bodenschichten oder das Grundwasser durchzusickern?
- Verdunstet die Substanz an Pflanzen- und Bodenoberflächen?

Sicherheit: Abbau und Rückstände in Pflanzen und Tieren


- Wie wird der Wirkstoff in Pflanzen und Tieren abgebaut?
- Wie sind die Abbauwege?
- In welche Bestandteile zerfällt der Wirkstoff?
- Welche Umbauprodukte entstehen?
- Wie hoch sind die Rückstände
 - im Erntegut und in den verarbeiteten Produkten?
 - im Fleisch und anderen tierischen Erzeugnissen?

Sicherheit: Toxikologie

- Wie ist das Verhalten der Substanz im Stoffwechsel?
- Wie hoch ist die akute und chronische Toxizität?
- Gibt es eine Haut- und Schleimhautreizung?
- Besteht ein Einfluss auf die Fortpflanzung?
- Kann es Missbildungen geben?
- Kann das Erbgut geschädigt werden?
- Besitzt die Substanz krebsauslösende Eigenschaften?

Sicherheit: Ökotoxikologie

- Welchen Einfluss hat die Substanz auf
 - Wasserorganismen
 - Honigbienen
 - Nützlinge
 - Bodenorganismen
 - Vögel und Säugetiere
 - Nichtzielpflanzen (z.B. Wasserlinse)
- Beeinflusst die Substanz deren wechselseitige Beziehungen im Ökosystem?

Sicherheit: Analytik

- Analytiker entwickeln für jeden Wirkstoff und dessen Abbauprodukte
 Analysemethoden, die mit gängiger Labortechnik eingesetzt werden können
- Moderne Geräte erlauben es, auch geringste Mengen aufzuspüren und exakt zu bestimmen

Formulierung

- Mit Hilfe der Formulierung wird ein Wirkstoff in eine anwendbare Form gebracht
- Wirkstoffe können in Lösungen gelöst, mit Trägerstoffen vermischt oder als Mikrokapseln von einer feinen Polymerhülle umgeben sein
- Formulierungen bewirken z.B., dass sich eine Spritzflüssigkeit auf der Blattoberfläche fein verteilt oder regenstabil ist

Zulassung von Pflanzenschutzmitteln in Deutschland: Einvernehmen aus UBA und BVL notwendig

Einvernehmen

BVL

Bundesamt für Verbraucherschutz und Lebensmittelsicherheit Risikomanagement

Zulassung

UBA

Umweltbundesamt

 Risikobewertung und Auswirkungen auf den Naturhaushalt

Benehmen

JKI

Julius Kühn-Institut Bundesforschungsinstitut für Kulturpflanzen (früher BBA)

- Wirksamkeit
- Pflanzenverträglichkeit
- Nutzen

Benehmen

BfR

Bundesinstitut für Risikobewertung

- Auswirkungen auf Mensch und Tier
- Arbeits- und Verbraucherschutz

Risikobewertung

Novelle der EU-Richtlinie 91/414 – Was kommt auf uns zu?

Wird ein sicheres Zulassungssystem nun noch sicherer?

Risikobasierte Entscheidung

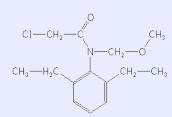
- Wirkliche Belastung berücksichtigt
- Basierend auf realistischen
 Szenarien (Rückstände,
 Metaboliten etc.)
- Umfangreiche Daten und wissenschaftliche Bewertung

Gefahrenbasierte Entscheidung

- Wirkliche Belastung vernachlässigt
- Basierend auf Labordaten
- Vergleichsweise wenige Informationen

Aufwändig aber realitätsnah

Schnell und einfach aber realitätsfern


Bewertung bisher: Gefahrenbasiert anhand der realen Anwendung

Bisher wissenschaftliches Grundprinzip der Wirkstoff/PSM-Zulassung:

Bewertung des **Risikos**, bei **bestimmungsgemäßer und sachgerechter Anwendung** des Mittels für Mensch, Tier und Umwelt

Verändert nach: Dr. Kaus, IVA Risiko = Gefahr x Eintrittswahrscheinlichkeit

Zukünftig gefahrenbsierte Bewertung der reinen Wirkstoffe in hoch konzentrierter Form:

Tatsächlich entstehendes Risiko aus der Art der Anwendung bleibt vollkommen unberücksichtigt

Dadurch müßten z.B. Salz, Granit, Vitamin D, Nikotin, Koffein, etc. verboten werden ... (Paracelsus läßt grüßen...)

Zum Ausschluß werden folgende Kriterien führen:

(Auszug nach Sitzung des EP am 13.01.2009)

- CMR 1 + 2 Stoffe (Gesundheit)

C arzinogen = krebserzeugend

M utagen = erbgutverändernd

R eproduktionstoxisch = fortpflanzungsgefährdend

1 = bezogen auf den Nachweis beim Menschen

2 = bezogen auf den Nachweis beim Tier/Relevanz für Mensch

ED Stoffe

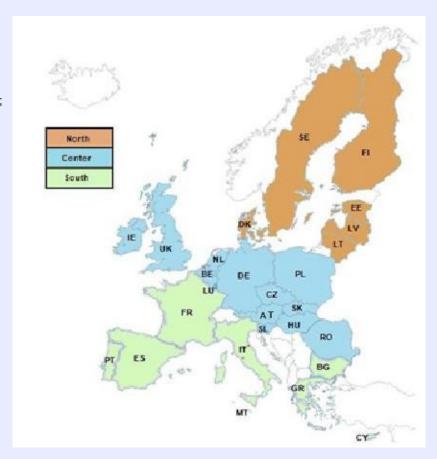
Endokrin (hormonell) beim Menschen schädigend wesentliches Kriterium, was bisher ohne genaue Definition bleibt

- POP (Umwelt)

Persistenter organischer Schadstoff = persitent organic pesticide

- PBT (Umwelt)

persistent – **b**ioakkumulativ - **t**oxisch

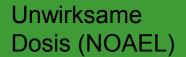

- vPvB (Umwelt)

sehr persistent, sehr bioakkumulativ)

- Gegenseitige Anerkennung von Pflanzenschutzmitteln innerhalb von 3 Zonen
 - Norden: Dänemark, Estland, Lettland, Littauen, Finnland, Schweden;
 - Zentral: Belgien, Tschechien, Deutschland, Irland, Luxemburg, Ungarn, Niederlande, Österreich, Polen, Rumänien, Slovenien, Slovakei, Großbritannien;
 - Süden: Bulgarien, Griechenland, Spanien, Frankreich, Italien, Zypern, Malta, Portugal
- Gegenseitige Anerkennung unter den Zonen ist möglich, aber nicht zwingend

Rückstände von Pflanzenschutzmitteln

- Rückstands-Höchstmengen wie werden sie ermittelt?
 - Pflanzenschutzmittelrückstände im Erntegut
 - Unwirksame Dosis beim Tier (NOAEL)
 - Zulässige Dosis für den Menschen (ADI, ARfD)
 - Verzehrgewohnheiten


Rückstands-Höchstmengen von Pflanzenschutzmitteln (MRL)

Rückstände im Erntegut

Verzehrgewohnheiten

Zulässige Aufnahmemenge (ADI, ARfD)

Risikobewertung

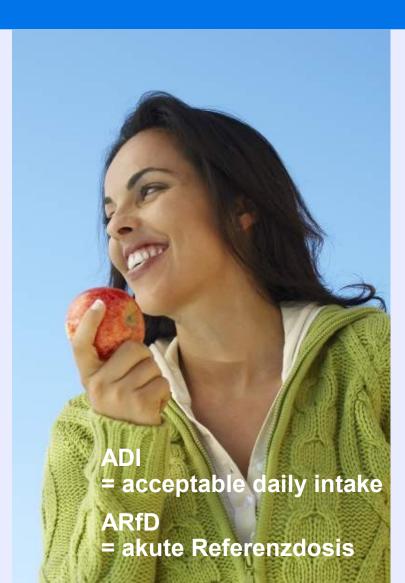
Nicht akzeptabel Keine Zulassung

Pflanzenschutzmittelrückstände im Erntegut

- Durchführung von Feldversuchen nach guter fachlicher Praxis
- Festlegung von:
 - Aufwandmenge
 - Anwendungshäufigkeit und –termin
 - Wartezeit
- Bestimmung der Rückstände unter den ungünstigsten Anwendungsbedingungen
- Vorschlag für Höchstmenge

Unwirksame Dosis beim Tier (NOAEL)

- Fütterungsversuche an verschiedenen Tierarten
- Bestimmung der Dosis, die bei lebenslanger Aufnahme keine Wirkung zeigt (chronische Tox)
- Bestimmung der Dosis, die bei einer hohen Aufnahme an einem Tag keine Wirkung zeigt (akute Tox)
- Ermittlung der unwirksamen Dosis beim Tier

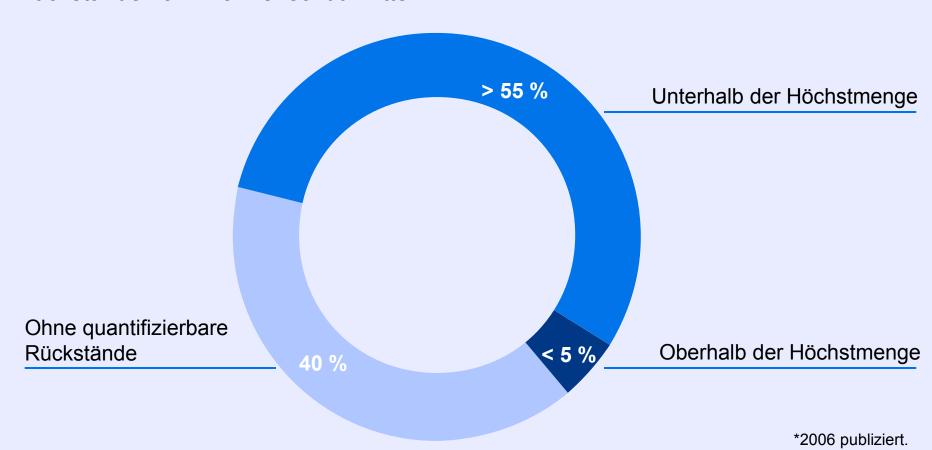


Zulässige Dosis für den Menschen (ADI, ARfD)

- Sicherheitsfaktor 100 (10 x 10)
 - Faktor 10 für Übertragbarkeit auf den Menschen
 - Faktor 10 für individuelle Unterschiede
- Werte beschreiben die Höhe der Rückstände, die
 - weder bei lebenslanger (chronische Tox) (ADI)
 - noch bei einmalig hoher (akute Tox) (ARfD)

Aufnahme eine gesundheitliche Gefährdung erwarten lassen

Gut zu wissen: ADI (immer > RHM) Der Sicherheitszuschlag 100 beim ADI heisst

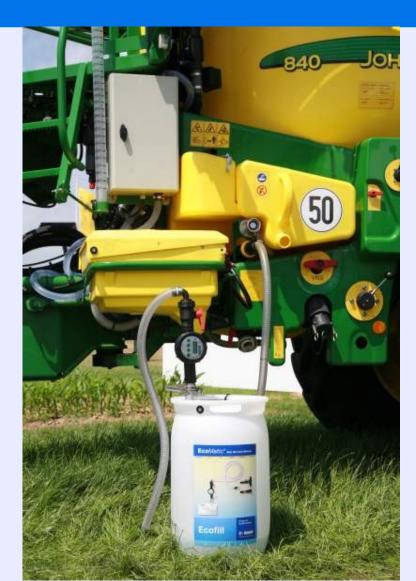

5 km Sicherheitszuschlag

- Bei einer Geschwindigkeit von 100 km/h reicht ein Sicherheitsabstand von 50 Metern, um einem Auffahrunfall vorzubeugen.
- Überträgt man den Sicherheitszuschlag aus der Pflanzenschutzprüfung, müsste ein Autofahrer bei gleicher Geschwindigkeit einen Sicherheitsabstand von 5 Kilometern einhalten.

Lebensmittel-Monitoring in Europa 2004*

Rückstände von Pflanzenschutzmitteln

Noch keine einheitlichen EU-Höchstmengen


- Gründe für die Überschreitung von Höchstmengen:
 - Importe von Lebensmitteln aus Ländern mit anderen Höchstmengendefinitionen
 - Kulturen, die im importierenden Land nicht angebaut werden
 - Andere "gute fachliche Praxis" im Exportland
 - Unterschiedliche Höchstmengen innerhalb der EU (Neuregelung zum 01.09.2008)
 - Fehlanwendungen

EcoMatic – das umweltfreundliche Mehrwegsystem

- Dies ist das Verpackungssystem für den sicheren Umgang mit Pflanzenschutzmitteln während der Misch-, Lade- und Spülvorgänge
- Durch die Reduktion von Verpackungsmüll und Spülvorgängen leistet es einen aktiven Beitrag zum Umweltschutz

Product Stewardship -Verantwortung übernehmen

Product Stewardship bedeutet: verantwortungsvoller und ethischer Umgang mit Pflanzenschutzmitteln von der Entwicklung bis zur Endnutzung (Responsible use training) und darüber hinaus

Forschung und Entwicklung

The Chemical Company